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Abstract 

This paper reports Phase 1 of a multi-stage validation programme for the 

LANGUAGECERT Automated Writing Scoring System, focusing on its large-scale 

operational behaviour on the LANGUAGECERT Academic Writing Test (LCAWT). The 

purpose of this phase is to evaluate whether the automated scoring system operates 

coherently and reliably under authentic testing conditions, and whether its behaviour 

aligns sufficiently with trained human examiners to support progression to subsequent 

validation phases. 

The study draws on a dataset of 2,394 test takers, each completing two writing tasks 

assessed against four analytic criteria: Task Fulfilment, Accuracy and Range of Grammar, 

Accuracy and Range of Vocabulary, and Organisation and Coherence. Automated scores 

were compared with scores produced by a composite of trained and quality-assured 

human markers, consistent with LANGUAGECERT’s operational marking procedures. 

Analyses included descriptive statistics, correlational analyses, and Many-Facet Rasch 

Measurement modelling to examine score correspondence, marker behaviour, and 

facet stability across tasks, criteria, and prompts. 

Results indicate strong agreement between automated and human scores at the total-

score level (Spearman’s ρ = 0.87 for both tasks), with similarly high correspondence 

across most analytic criteria. Rasch analyses showed acceptable fit for marker, criterion, 

and question facets, and discrepancy rates relative to operational quality-assurance 

thresholds were low (approximately 1.5% per task), substantially below typical human–

human discrepancy levels. 

Taken together, the findings demonstrate that the automated scoring system exhibits 

stable, interpretable, and construct-aligned behaviour under operational conditions. In 

line with its intended evidential role, Phase 1 establishes a robust operational 

foundation for subsequent precision- and fairness-focused phases of the validation 

programme, rather than constituting a standalone or definitive validation of automated 

scoring performance. 
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Introduction 

Automated scoring systems are increasingly used in high-stakes language assessment, 

where their deployment must be supported by a coherent body of validation evidence. 

Such evidence is rarely provided by a single study; rather, it typically accumulates across 

multiple investigations that address different aspects of system performance under 

varying conditions. 

Within this context, the present paper forms part of a broader validation programme for 

the LANGUAGECERT Automated Writing Scoring System. The work reported here 

constitutes Phase 1 of this programme and focuses on the system’s large-scale 

operational behaviour on the LANGUAGECERT Academic Writing Test (LCAWT), using 

authentic test data and established analytic approaches. 

whether, under realistic operational conditions, the automated scoring system operates 

within an acceptable performance range when compared with trained and quality-

assured human markers. The focus is on large-scale score behaviour, including stability, 

consistency, and alignment with the intended writing construct, rather than on fine-

grained estimates of human rater variability or subgroup-level effects. As such, the 

findings are intended to provide foundational operational evidence that informs 

subsequent stages of validation, rather than a comprehensive evaluation of automated 

scoring performance in isolation. 

The next section outlines the validation framework within which this study is positioned 

and clarifies the evidential role of the present analyses. 

Validation Framework and Study Positioning 

The validation of automated scoring systems intended for use in high-stakes language 

assessment is typically supported by evidence accumulated across multiple, 

complementary investigations. Different stages of validation address distinct questions, 

ranging from large-scale operational behaviour to more tightly controlled examinations 

of scoring precision and fairness. 

Within this broader context, the validation of the LANGUAGECERT Automated Writing 

Scoring System is being undertaken through a staged programme of related studies, 

each contributing a different form of evidence to the overall validity argument. The 

programme currently comprises three phases at different stages of development. 

Phase 1, reported in the present paper, constitutes a foundational operational study 

and is now completed. Its purpose was to examine the large-scale behaviour of the 

automated scoring system when applied to authentic test data and compared with 

trained and quality-assured human markers. The emphasis at this stage is on score 

stability, consistency, and construct-aligned behaviour across tasks, criteria, and 

prompts under realistic scoring conditions. 
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Phase 2 is a multi-rater study, for which a detailed study plan has been developed. This 

phase is designed to examine agreement between the automated scoring system and 

multiple independent human raters, situating automated–human agreement within the 

broader distribution of human–human variability. Evidence from Phase 1 informed the 

design parameters of this work, but did not constitute its sole motivation. 

Phase 3 extends the validation programme to questions of subgroup behaviour and 

fairness. This phase examines automated scoring performance consistency across 

relevant test-taker subgroups and contributes fairness-related evidence required for 

responsible use in high-stakes assessment contexts. 

The present paper (Phase 1 study) should therefore be interpreted in relation to its 

specific evidential role within this broader programme. It provides foundational 

operational evidence that supports, but does not replace, subsequent precision- and 

fairness-focused validation work, and should not be read as a standalone or definitive 

evaluation of automated scoring performance. 

Background 

The use of computers to score student essays dates back to the 1960s with the work of 

Page (1966), whose Project Essay Grade (PEG) modelled relationships between surface 

linguistic features (e.g., sentence length, word count, and punctuation) and human-

assigned scores using regression analysis. Although primitive by contemporary 

standards, PEG represented a critical conceptual leap: that aspects of writing quality 

could be quantified and predicted algorithmically. 

From the 1980s onward, advances in computational capacity and the availability of 

larger linguistic corpora contributed to increased research activity in computer-based 

testing and assessment (Chapelle & Douglas, 2006). During this period, the educational 

potential of computational tools was increasingly recognised within broader Computer-

Assisted Language Learning (CALL) frameworks. Warschauer and Healey (1998), for 

example, anticipated the emergence of an Intelligent CALL phase in which technology-

supported systems would provide adaptive guidance and personalised feedback. 

Developments in natural language processing (NLP) and artificial intelligence (AI) have 

since enabled aspects of this vision to be realised within automated writing assessment. 

Evolution of Analytic Techniques in Automated Scoring 

Throughout the 2000s and 2010s, research and commercial applications of automated 

writing assessment (AWA) systems expanded substantially. Ramineni and Williamson 

(2013) documented a range of AWA systems, each employing different combinations of 

linguistic analysis and statistical modelling. These approaches included rule-based 

feature modelling (e.g., later iterations of PEG; Page, 2003), semantic vector methods 

such as Latent Semantic Analysis (e.g., the Intelligent Essay Assessor; Foltz, Laham, & 
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Landauer, 1998), and NLP-driven feature extraction approaches used in systems such as 

e-rater and IntelliMetric (Burstein, 2003). 

Validation of AWA systems has typically been framed around multiple dimensions 

reflecting both psychometric and practical considerations. These dimensions commonly 

include statistical agreement with human scores, fairness across test-taker groups, 

relationships with external performance indicators, and the broader consequences of 

automated scoring use. Table 1 summarises these dimensions as articulated by 

Ramineni and Williamson (2013), which continue to inform contemporary validation 

practice. 

Table 1: Criteria for assessing AWA system performance (adapted from Ramineni & 

Williamson, 2013) 

Dimension Description 

Statistical agreement 

between computer- and 

human-derived scores 

The degree of correspondence between machine-

generated and human-assigned scores, typically 

measured through correlations, kappa coefficients. 

Fairness 

The extent to which scores are consistent and unbiased 

across different groups of test takers, such as those 

differing by gender or first language. 

Relationship with external 

variables 

The strength of association between automated scores 

and other relevant indicators of performance, such as 

results on related test components or English class 

grades. 

Consequential validity 
The practical and ethical implications of using 

automated scores in place of human scores. 

 

By the mid-2010s, NLP techniques had become integral to the design of nearly all AWA 

systems. The growing sophistication of language models enabled systems to move 

beyond surface feature counting to capture aspects of coherence, cohesion, and 

rhetorical organisation. Systems such as ETS’s E-rater (Burstein, 2003) were used 

operationally in large-scale assessments such as the TOEFL, functioning either 

autonomously or within hybrid human–machine marking models. (Attali & Burstein, 

2006; Ramineni & Williamson, 2013).  

Integration of AI-Based Scoring in Large-Scale English Language 

Assessment 

Over the past decade, the use of AI-based automarking has transitioned from 

experimental to operational in a number of large-scale English language assessments. 

Adoption across the sector, however, has been neither uniform nor unconditional. 
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Testing organisations differ markedly in the extent to which automated scoring is 

integrated into operational decision-making, reflecting varying institutional assessments 

of risk, accountability, and evidential sufficiency. 

In high-stakes contexts, automated scoring is most commonly implemented within 

hybrid or human-in-the-loop frameworks, in which automated scores are 

complemented by human oversight and review. Such models are designed to combine 

the efficiency and consistency of algorithmic scoring with the interpretive judgement, 

contextual sensitivity, and ethical accountability of trained human examiners.  

While advances in AI-based scoring have produced increasingly strong alignment with 

human ratings under controlled conditions, fully automated and unsupervised 

deployment remains comparatively limited in high-stakes writing assessment. This 

reflects ongoing concerns relating to construct representation, edge-case behaviour, 

and the handling of atypical or severely deficient responses, areas in which human 

judgement continues to play a critical role. As a result, sector-wide practice tends to 

emphasise progressive integration rather than wholesale replacement of human 

scoring.  

Importantly, a number of high-stakes English language assessments continue to rely 

exclusively on human marking for writing, reflecting differing institutional positions on 

automation and risk management. Across the sector as a whole, however, a consistent 

emphasis can be observed on reliability, fairness, transparency, and human oversight 

wherever automated scoring is used. Automated scoring is thus increasingly positioned 

as a complement to expert human judgement rather than a wholesale replacement. 

From NLP to Large Language Models 

The emergence of transformer-based Large Language Models (LLMs) such as ChatGPT 

has marked a transformative phase in automated writing assessment. Whereas earlier 

systems relied on manually engineered linguistic features and regression modelling, 

LLMs can infer discourse-level, pragmatic, and rhetorical relationships directly from vast 

text corpora. This allows for more nuanced evaluation of content relevance, coherence, 

and stylistic appropriateness. 

Recent studies have shown that LLM-based approaches can achieve levels of agreement 

with human raters comparable to, and in some cases exceeding, earlier NLP-based 

systems, particularly when guided by explicit rubrics and exemplar material (e.g., 

Mizumoto & Eguchi, 2023; Xiao et al., 2024). Related work across multiple languages 

suggests that such models may generalise scoring behaviour beyond English, although 

concerns regarding bias, construct representation, explainability, and governance 

remain active areas of research (Kostić et al., 2024; Kwon et al., 2023).  

  



 

|6 

 

The Role of AI Feedback and Future Directions 

Beyond summative assessment, AI-based systems have increasingly been explored for 

formative feedback generation. Prior research has examined the use of automated 

systems to provide targeted guidance on vocabulary, grammar, and discourse structure 

(Ramineni & Williamson, 2013; Mansour et al., 2024; Shi & Aryadoust, 2024). This 

capacity aligns with the long-standing pedagogical vision of Intelligent CALL outlined by 

Warschauer & Healey (1998). While feedback generation lies outside the scope of the 

present study, it represents a potential extension of automated scoring systems in 

future work. 

LANGUAGECERT Automated Writing Scoring: Analytic and 

Modelling Framework 

The LANGUAGECERT Automated Writing Scoring System adopts a hybrid modelling 

approach that integrates linguistically motivated features with contemporary deep 

learning techniques. The design reflects a balance between construct-relevant linguistic 

analysis and contextual language representation, with the aim of supporting reliable 

operational scoring while enabling transparent validation. The process is described 

briefly below. 

Scripts identified as unsuitable for automated analysis are excluded at this stage. These 

include responses that are excessively short (fewer than 85 unique words), blank or 

score-zero submissions, and texts that exhibit characteristics of non-language output, 

such as a very low proportion of valid English words or unusually high repetition. The 

remaining scripts are then partitioned into training and evaluation sets. This filtering 

step reflects standard operational quality-control practice and is distinct from the 

validation analyses reported in this study. 

A range of readability, lexical, and syntactic metrics is subsequently computed. 

Readability measures include indices such as Flesch Reading Ease and SMOG, while 

lexical and syntactic features encompass average sentence length, indicators of 

vocabulary diversity and complexity, and part-of-speech (POS) n-gram distributions (uni- 

to tri-gram). These features are selected to align with aspects of writing performance 

explicitly referenced in the LCAWT rating scale and to support construct-aligned score 

modelling. 

In parallel, contextual representations are derived using Bidirectional Encoder 

Representations from Transformers (BERT; Devlin et al., 2019). A pre-trained BERT 

model is fine-tuned on scored writing scripts to produce dense embeddings that capture 

semantic and stylistic characteristics not readily represented by surface linguistic 

features alone. 

Score prediction is performed using a regression-based learning framework (XGBoost; 

Chen & Guestrin, 2016). For each analytic criterion, the modelling process allows for 
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different combinations of available feature sets, including contextual embeddings, 

handcrafted linguistic features, and POS-based representations. In practice, most 

deployed models incorporate all feature types, though the framework does not require 

a fixed fusion of components for all criteria. Model performance during development is 

evaluated using standard predictive indices, including Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), and Quadratic Weighted Kappa (QWK), which provide 

complementary information about average prediction error, sensitivity to large 

deviations, and agreement with human scores.  

The system underwent two major development iterations. Version 1 was trained on data 

collected up to August 2024, while Version 2 was retrained and re-evaluated using 

additional data collected between September and December 2024. Table 2 summarises 

the training and testing configurations for each version. All analyses reported in the 

present study are based on Version 2 of the model. 

Table 2: Automarker training and testing parameters 

Automarker version Time frame Training scripts Testing scripts 

Version 1 Up to Aug 2024 1,838 460 

Version 2 Sept-Dec 2024 2,232 558 
 

A hybrid design was selected over an end-to-end generative language model for three 

primary reasons. First, the inclusion of explicit linguistic features provides interpretable 

signals aligned with the construct definitions of the LCAWT rating scale, supporting 

transparent validation work, even where BERT-derived representations typically carry 

greater predictive weight. Second, the use of contextual embeddings enables modelling 

of semantic and stylistic nuance while remaining comparatively stable and data-efficient, 

compared with large generative models. Third, the XGBoost regression-based stage 

offers predictable behaviour under controlled conditions, reducing the risk of drift, 

hallucination, or unexplainable variance associated with generative LLM scoring. Taken 

together, this architecture balances modern contextual modelling with the operational 

reliability and controlled interpretability required in high-stakes assessment. 

The Current Study  

To contextualise the analyses that follow, this section outlines the assessment 

instrument, dataset, and analytic design used to compare automated and human-

generated scores. 

The LANGUAGECERT Academic Writing Test 

The present study draws on scripts from the LANGUAGECERT Academic Writing Test 

(LCAWT), a high-stakes, multi-level test designed to assess the ability to understand, use, 

and communicate effectively in written English for academic purposes. The LCAWT lasts 

approximately 50 minutes and comprises two tasks: (1) a structured response to visual 
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input (e.g., a graph or table) of 150-200 words, and (2) an argumentative academic essay 

of approximately 250 words. 

Writing performance is assessed using analytic marking criteria aligned with the 

descriptors of the Common European Framework of Reference for Languages (CEFR). 

The four criteria are Task Fulfilment (TF), Accuracy and Range of Grammar (GRA), 

Accuracy and Range of Vocabulary (VRA), and Organisation and Coherence (OC). 

Performance on each criterion is rated on a nine-point scale (0–8), yielding a maximum 

composite score of 32. Each task is double-marked by trained human examiners, and 

the final task score represents the mean of the two ratings. While the LCAWT reports 

results across CEFR levels A1 to C2, its primary purpose is essentially to indicate 

readiness for tertiary-level study; hence, most test-taker scores fall between B1 and C1 

levels. 

Sample 

The dataset comprises 2,394 LCAWT test takers, each contributing one script for each of 

the two writing tasks. Across the dataset, each task was administered using 11 distinct 

prompts, yielding a total of 22 unique writing prompts. Minor variation in the number of 

scripts per task reflects routine data-cleaning procedures applied prior to analysis. Five 

scripts from Task 1 were excluded because they did not meet minimal analysable 

criteria (e.g. truncated or empty responses). No candidates were removed in full, and 

the total number of test takers therefore remains unchanged.  

Markers 

Two sources of scores were compared in the study. Marker 1 represents the finalised 

human scores produced through LANGUAGECERT’s routine operational marking 

process. These scores were generated by multiple trained and accredited human 

markers, all of whom marked in accordance with standard procedures. Where 

applicable, scores were subject to routine moderation and sign-off processes before 

being finalised. The resulting human scores therefore reflect operationally valid 

outcomes rather than individual examiner judgements. 

Marker 2 refers to the automated writing scoring system described above, which 

generated criterion-level and total scores for the same scripts. Comparisons in the 

present study are thus between operationally finalised human scores and automated 

scores produced independently by the system. 

Research Questions 

The broad research hypothesis of the study is that the LANGUAGECERT automarker 

would demonstrate statistical qualities comparable to those reported among human 

markers, reflecting the intended evidential role of Phase 1. Specifically:  
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1. Correlations between automarker and human total scores (out of 32 for the four 

criteria) will be above 0.80. 

2. Rasch fit statistics for marker, criterion and question facets will fall within the 

range 0.50–1.50. 

3. Discrepancies between automarker and human ratings will remain below 10%. 

Analysis 

This section analyses test-taker writing performance as scored by two sources: the 

operationally finalised human scores (Marker 1) and the automated scoring system 

(Marker 2). Analyses are presented in stages, beginning with descriptive statistics, 

followed by correlational analyses and Many-Facet Rasch Analysis (MFRA). 

Descriptive statistics are first reported for both score sources at the criterion level and 

for total composite scores. Inferential analyses then examine the degree of association 

between human and automated scores. Given the ordinal nature of the 0–8 rating scales 

and the focus on association rather than mean differences, Spearman’s rank correlation 

coefficient (ρ) is used as the primary measure of correspondence (Lumley, 2002).   

In addition, MFRA is employed to examine score behaviour across multiple facets 

simultaneously. MFRA has been widely used in performance assessments such as 

writing to model variability associated with test takers, raters, tasks, and rating criteria 

(Engelhard, 1992; McNamara, 1996). In the present study, MFRA is used to examine 

marker behaviour and score consistency across test-taker, task, and criterion facets 

within a unified measurement framework. 

Descriptives 

Table 3 presents descriptive statistics for two writing tasks by score source. The 

maximum possible score for each task is 32. 

Table 3: Descriptive statistics for human and automarker scores 

Task Task 1  Task 2 

 Human marker Automarker  Human marker Automarker 

Number  2,389 2,389  2,394 2,394 

Mean 18.10 17.65  18.03 17.66 

SD 6.24 5.37  6.17 5.35 

Minimum 1 4  2 4 

Maximum 32 28  32 27 
 

Across both tasks, mean scores produced by the human and automated scoring sources 

differed by less than one point. Human mean scores were highly consistent across tasks 

(18.10 and 18.03), while the automarker’s mean scores were virtually identical (17.65 and 

17.66), indicating stable scoring behaviour across task types. 
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Correlations 

Table 4 presents Spearman’s ρ correlations between human and automated scores at 

the total-score level and for each analytic criterion. Following Hatch and Lazaraton’s 

(1991) descriptors for inter-rater reliability, correlations of 0.80 or above are interpreted 

as strong, 0.50–0.79 as moderate to strong, and around 0.50 as moderate.  

Table 4: Correlations (Spearman’s ρ) between human and automarker scores by task and 

criterion 

Task Total  TF GRA VRA O&C 

1 0.87 0.81 0.84 0.83 0.75 

2 0.87 0.81 0.84 0.84 0.76 
 

At the total-score level, correlations between human and automated scores were strong 

for both tasks (ρ=0.87). Criterion-level correlations were similarly high, with strong 

correlations (ρ ≥ 0.80) across three of the four criteria. The slightly lower, though still 

substantial, correlations on Organisation and Coherence (ρ ≈ 0.75) are consistent with 

prior findings that discourse-level constructs present greater challenges for automated 

scoring models.  

Interestingly, Task Fulfilment, despite its reliance on prompt-specific information, also 

demonstrated correlations above 0.80, indicating that the automarker was able to infer 

topic relevance with reasonable accuracy. Overall, the descriptive and correlational 

results indicate that the automarker performs comparably to an experienced human 

marker in terms of scores awarded, range of scores, and correlations between criteria. 

Organisation and Coherence correlations (ρ≈0.75) fall below the 0.80 threshold, 

consistent with prior research on discourse-level constructs. For Phase 1, correlations 

above 0.70 are acceptable given strong total-score correspondence. However, this 

relatively weaker performance will be looked at in Phase 2 through multiple 

independent raters. 

Many Facet Rasch Analysis  

In performance assessments such as writing tests Many-Facet Rasch Analysis (MFRA) has 

become a widely accepted approach for modelling multiple sources of variability (e.g., 

facets for test takers, raters, tasks, and criteria) (Engelhard, 1992; Weigle, 1998, 2002). In 

MFRA, the measurement scale derived by application of a unified metric such as the 

Rasch model means that various phenomena – marker severity, question difficulty etc – 

can be modelled and compensated for (McNamara, 1996; Weir, 2005). In MFRA, the 

measurement scale derives from the probability of observed ratings given facet 

locations; thus, situational factors -here, test-taker ability, question difficulty, and marker 

severity- are explicitly modelled in constructing the overall measurement picture. The 

present study specified a four-facet design: markers, test takers, task prompts (labelled 

‘Questions’ in FACETS output), and marking criteria. The human marker facet represents 
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an operationally finalised composite of multiple trained examiners rather than an 

individual rater, reflecting standard LANGUAGECERT marking and moderation 

procedures. Analyses were conducted with FACETS v4.1.8 (Linacre, 2024). 

MFRA offers advantages over purely classical statistics by calibrating all facets onto a 

single unidimensional latent scale, enabling direct comparison across marker severity, 

task difficulty, and criterion behaviour (Eckes, 2015). In line with previous 

LANGUAGECERT work (e.g., Coniam et al., 2021a; Papargyris & Yan, 2022), fit is reported 

as a key diagnostic. Fit relates to how well obtained values match expected values and is 

divisible into related, if slightly different, categories. The most widely used is the infit 

mean square (MnSq) statistic. Infit values around 1.0 indicate expected variation, with 

values between approximately 0.5-1.5 commonly taken as acceptable in operational 

assessment contexts (Lunz & Stahl, 1990). High infit suggests excess, unsystematic 

variation (misfit); very low infit indicates over-predictability (overfit).  

Data preparation 

For MFRA purposes, scripts from both tasks were combined into a single dataset and 

subjected to routine preprocessing prior to calibration. The resulting FACETS analysis 

comprised 39,240 criterion-level rating observations, distributed across four analytic 

criteria, two scoring sources, 22 task prompts, and 2,394 test takers. This dataset 

represents the complete set of valid rater–response interactions retained for 

multifaceted calibration. 

Model Fit and Facet Maps 

Overall model fit was examined prior to interpretation of individual facets. Following 

Linacre (2002), satisfactory fit is indicated when no more than approximately 5% of 

standardised residuals exceed ±2 and no more than 1% exceed ±3. In the present 

analysis, 39,240 valid responses contributed to parameter estimation. Of these, 21 

responses (0.05%) exceeded ±2, and 79 responses (0.20%) exceeded ±3, well within 

acceptable limits. 

As some raw scores included decimal points, all scores were multiplied by 10 to meet 

FACETS input requirements. This transformation affects the scale of reported scores, as 

in some cases (total score, observed score, fair average), the output appears 10 times 

larger than it actually is, however, fit and measure are not affected. 

Figure 1 presents the Wright map displaying the relative locations of all facets. Stricter 

markers are located higher up the ruler; more lenient markers down the ruler. More 

able test takers are located higher up the scale, less able test takers further down the 

scale. Marking criteria shown higher are harder (i.e., test takers are awarded lower 

scores on these criteria); criteria which are lower are easier. 
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Figure 1: Facet maps 
+-----------------------------------------------------------------------------------------+ 

|Measr|-Markers          |+Test takers|-Questions|-Criteria                         |WRITE| 

|-----+------------------+------------+----------+----------------------------------+-----| 

|   2 +                  +            +          +                                  + (8) | 

|     |                  |            |          |                                  | --- | 

|     |                  |            |          |                                  |     | 

|     |                  | .          |          |                                  |     | 

|     |                  |            |          |                                  |  7  | 

|     |                  | .          |          |                                  |     | 

|     |                  | .          |          |                                  | --- | 

|     |                  | .          |          |                                  |     | 

|     |                  | *.         |          |                                  |     | 

|     |                  | *.         |          |                                  | --- | 

|   1 +                  + **.        +          +                                  +     | 

|     |                  | ****       |          |                                  |  6  | 

|     |                  | ****.      |          |                                  | --- | 

|     |                  | ****.      |          |                                  |     | 

|     |                  | *******.   |          |                                  | --- | 

|     |                  | *******.   |          |                                  |  5  | 

|     |                  | ********.  |          |                                  | --- | 

|     |                  | *********. |          |                                  |     | 

|     |                  | *******.   |          |                                  |  4  | 

|     |                  | ******.    | *****.   | Coherence                        | --- | 

*   0 * Human Automarker * *****.     * *.       * Grammar                          *     * 

|     |                  | ****.      | *.       | Task Fulfilment  Vocabulary      | --- | 

|     |                  | ***.       | **       |                                  |  3  | 

|     |                  | **.        |          |                                  | --- | 

|     |                  | *.         |          |                                  |     | 

|     |                  | *.         |          |                                  | --- | 

|     |                  | .          |          |                                  |     | 

|     |                  | .          |          |                                  |  2  | 

|     |                  | .          |          |                                  | --- | 

|     |                  | .          |          |                                  |     | 

|  -1 +                  + .          +          +                                  +     | 

|     |                  | .          |          |                                  |     | 

|     |                  | .          |          |                                  |     | 

|     |                  |            |          |                                  | --- | 

|     |                  |            |          |                                  |     | 

|     |                  | .          |          |                                  |     | 

|     |                  |            |          |                                  |     | 

|     |                  | .          |          |                                  |     | 

|     |                  | .          |          |                                  |  1  | 

|     |                  | .          |          |                                  |     | 

|  -2 +                  +            +          +                                  +     | 

|     |                  |            |          |                                  |     | 

|     |                  |            |          |                                  |     | 

|     |                  | .          |          |                                  |     | 

|     |                  |            |          |                                  | --- | 

|     |                  |            |          |                                  |     | 

|     |                  |            |          |                                  |     | 

|     |                  |            |          |                                  |     | 

|     |                  |            |          |                                  |     | 

|     |                  |            |          |                                  |     | 

|  -3 +                  +            +          +                                  + (0) | 

|-----+------------------+------------+----------+----------------------------------+-----| 

|Measr|-Markers          | * = 15     | * = 2    |-Rating_Scales                    |WRITE| 

+-----------------------------------------------------------------------------------------+ 

As can be seen from the map, test takers show a spread of approximately three logits, 

while marker, criterion, and task facets cluster closely around the zero-logit line, 

indicating broadly comparable behaviour across these facets. Task prompt difficulty 

spans a narrow range (approximately −0.21 to +0.15 logits), with infit values close to 1.0, 

suggesting minimal variation in prompt difficulty. 

Marker Facet 

Table 5 presents the MFRA statistics for the two scoring sources. 
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Table 5: Marker Measurement Report 
+--------------------------------------------------------------------------------------------+ 

| Total   Obsvd  Fair(M)|   Model      |    Infit      Outfit                  |             | 

| Count  Average Average| Measure  S.E.|  MnSq ZStd  MnSq ZStd |Discrm| PtBis  | N Markers   | 

|--------------------------------+------------+----------+----------------------------+------| 

|19344     44.04  43.86 |    .01   .00 |  .82  -9.0   .80 -9.0 | 1.34 |   .40  | 2 Automarker| 

|19896     44.00  44.31 |   -.01   .00 | 1.18   9.0  1.15  9.0 |  .67 |   .39  | 1 Human     | 

|--------------------------------+------------+--------------------------------+-------------| 

|19620.0   44.02  44.08 |    .00   .00 | 1.00    .0   .97   .0 |      |   .39  |             | 

|  390.3     .03    .32 |    .01   .00 |  .25  12.7   .24 12.7 |      |   .01  |             | 

+--------------------------------------------------------------------------------------------+ 

|Model, Sample: RMSE .00  Adj (True) S.D. .01  Separation 3.18  Strata 4.58  Reliability .91 | 

|Model, Fixed (all same) chi-squared: 11.1  d.f.: 1  significance (probability): .00         | 

---------------------------------------------------------------------------------------------+ 

Marker reliability was high (0.91), indicating consistent internal ranking of scripts. Both 

the human and automated markers were located close to the zero-logit line, suggesting 

comparable overall severity. Infit statistics for both sources fell comfortably within 

accepted operational thresholds.  

Task Prompt Facet 

In previous MFRA analyses, Tasks 1 and 2 showed very comparable statistics: both were 

located around the zero-logit line indicating that, as facets, they were operating very 

similarly. Consequently, the analysis below presents a composite analysis of the 

questions that constitute both Tasks 1 and 2. Table 6 reports Task Prompt Measurement 

statistics (labelled as “Questions” in FACETS output). 

Table 6: Task Prompt Measurement Report 
+----------------------------------------------------------------+ 

|  Fair(M)|   Model        |   Infit          Outfit  |          | 

|  Average|  Measure  S.E. | MnSq  ZStd     MnSq ZStd | Question |   

|--------------------------------+--------------+----------------- 

|   42.28 |    .06   .01   | 1.21   6.7   1.17    5.3 |  57408   | 

|   43.59 |    .02   .01   | 1.17   5.3   1.13    4.0 |  59651   | 

|   42.78 |    .04   .01   | 1.16   4.9   1.11    3.3 |  59075   |  

|   41.74 |    .08   .01   | 1.14   4.7   1.11    3.6 |  58195   | 

|   41.23 |    .09   .01   | 1.12   3.6   1.08    2.5 |  74112   | 

|   46.95 |   -.09   .01   | 1.09   2.3   1.10    2.6 |  67259   | 

|   42.47 |    .05   .01   | 1.04   1.2    .98    -.5 |  57595   | 

|   40.81 |    .11   .01   | 1.03    .9    .99    -.1 |  58140   | 

|   49.79 |   -.19   .01   |  .99   -.2    .99    -.2 |  70394   | 

|   50.32 |   -.21   .01   |  .98   -.5   1.00     .0 |  66924   | 

|   40.34 |    .12   .01   |  .99   -.1    .96   -1.3 |  71701   | 

|   43.63 |    .01   .01   |  .98   -.8    .95   -1.8 |  72344   | 

|   42.13 |    .06   .01   |  .98   -.7    .94   -1.8 |  59565   | 

|   40.02 |    .13   .01   |  .92   -2.7   .91   -3.2 |  58194   | 

|   41.90 |    .07   .01   |  .94   -2.2   .91   -3.2 |  59782   | 

|   47.48 |   -.11   .01   |  .90   -2.9   .89   -3.0 |  69580   | 

|   49.24 |   -.17   .01   |  .89   -4.4   .90   -3.9 |  70134   | 

|   47.65 |   -.12   .01   |  .89   -2.9   .88   -3.1 |  67370   | 

|   39.54 |    .15   .01   |  .89   -3.9   .87   -4.5 |  59776   | 

|   42.24 |    .06   .01   |  .84   -5.7   .81   -6.9 |  72343   | 

|   48.66 |   -.15   .01   |  .80   -5.5   .79   -5.7 |  67356   | 

|--------------------------------+--------------+----------------- 

| 44.04   |    .00   .01   | 1.00   -.1    .97    -.9 |          |  

|  3.51   |    .12   .00   |  .12   3.7    .11    3.4 |          |  

+-------------------------------------------------------------------------------------- 

Model, Sample: RMSE .01  S.D. .12  Separation 11.18  Strata 15.23  Reliability .99 

Model, Fixed (all same) chi-squared: 2376.7 d.f.: 20 significance (probability): .00 

--------------------------------------------------------------------------------------- 

Task prompt reliability was high (0.99), and all prompts demonstrated infit and outfit 

values within the 0.5–1.5 range, indicating good fit to the model. Severity ranges from 

about –0.21 to +0.15 logits, i.e., < 0.5 logit spread. The narrow spread of prompt difficulty 

supports the interpretation that prompts functioned equivalently across the dataset.  



 

|14 

 

Discrepancy Analysis 

Discrepancy analysis examined cases in which differences between human and 

automated scores exceeded LANGUAGECERT’s routine quality-assurance threshold, 

triggering review by a Chief Examiner. Under normal operational conditions, 

approximately 10% of scripts marked by two human raters require such review.  

Table 7 below presents the figures for Tasks 1 and 2 where the differences between 

human and automarker scores met the criteria for third-marker review under this policy. 

Table 7: Task discrepancy figures between the two markers 

Task Raw figure Percentage discrepancy 

1 37/2,389 1.55% 

2 38/2,394 1.59% 
 

In the present dataset, discrepancies meeting the review threshold occurred in 

approximately 1.5% of scripts for each task. These figures indicate that automated 

scores aligned closely with operationally finalised human scores and generated 

substantially fewer review-triggering cases than are typically observed in human–human 

marking.  

Taken together, the results suggest that, under operational conditions, the automated 

scoring system exhibits stable and coherent scoring behaviour, consistent with its 

intended role in Phase 1 of the validation programme. However, it important to 

emphasise that Marker 1 represents quality-assured operational scores after 

LANGUAGECERT moderation procedures. Approximately 10% of scripts underwent Chief 

Examiner adjudication; others represent concordant double-marking. The 1.5% 

automarker discrepancy rate therefore reflects disagreement with moderated 

outcomes, not pre-moderation human-human variance. Pre-moderation variability is 

not analysed in Phase 1. It is however a key issue and will be examined in Phase 2's 

independent multiple-rater design. 

Limitations 

The scope of the present study is intentionally bounded by its role within a staged 

validation programme. While the automated scores are compared against operationally 

finalised human scores produced through LANGUAGECERT’s standard marking and 

moderation processes, the design does not incorporate multiple independent human 

ratings of each script. As a result, the study does not estimate the full distribution of 

human inter-rater variability or define a human benchmark beyond the operational 

composite. 

This reflects the specific evidential purpose of Phase 1, which is to examine large-scale 

operational behaviour, score stability, and construct-aligned performance under realistic 

scoring conditions. Questions that require independent rater replication—such as fine-
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grained estimates of rater severity differences or direct comparison of automated–

human agreement against the full range of human–human variability—lie outside the 

scope of this phase. 

Subsequent phases of the validation programme address these complementary 

questions through designs that incorporate multiple independent human raters and 

more controlled rating conditions. The present findings should therefore be interpreted 

as foundational operational evidence that supports, but does not replace, later 

precision- and fairness-focused validation work. 

Conclusion 

This study reported Phase 1 of a staged validation programme for the LANGUAGECERT 

Automated Writing Scoring System, focusing on its operational behaviour on the 

LANGUAGECERT Academic Writing Test (LCAWT). The analyses drew on a large, 

operationally representative dataset comprising 2,394 test takers, each completing two 

writing tasks. Automated scores were compared with operationally finalised human 

scores produced through LANGUAGECERT’s standard marking and moderation 

processes, reflecting authentic scoring conditions in high-stakes assessment. 

Across both tasks, automated and human scores demonstrated strong correspondence 

at the total-score level, with correlations of 0.87. Many-Facet Rasch Analysis indicated 

acceptable fit for marker, criterion, and task prompt facets, with stable behaviour across 

scoring dimensions. Discrepancy rates relative to routine quality-assurance thresholds 

were low, and substantially below those typically observed in human–human marking 

under comparable conditions. 

Taken together, the findings indicate that the automated scoring system operates 

coherently within the intended assessment framework and produces score patterns that 

are interpretable alongside human judgements under operational conditions. In line 

with the evidential purpose of Phase 1, these results provide foundational operational 

evidence regarding score stability, construct alignment, and system behaviour at scale. 

They do not constitute a complete validation of automated scoring performance, nor do 

they address questions requiring independent human rater replication or subgroup-

level fairness analysis. 

These complementary questions are addressed through subsequent phases of the 

validation programme, including controlled multi-rater precision studies and analyses of 

subgroup behaviour. The present study establishes an appropriate empirical foundation 

for this continued work by demonstrating that the automated scoring system behaves 

predictably and proportionately within a human-in-charge assessment model. In this 

way, the phased approach supports a cumulative and methodologically coherent 

validation strategy, with the current study serving as a necessary first stage rather than a 

definitive endpoint.  
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